Incremental and Multi-feature Tensor Subspace Learning Applied for Background Modeling and Subtraction
نویسندگان
چکیده
Background subtraction (BS) is the art of separating moving objects from their background. The Background Modeling (BM) is one of the main steps of the BS process. Several subspace learning (SL) algorithms based on matrix and tensor tools have been used to perform the BM of the scenes. However, several SL algorithms work on a batch process increasing memory consumption when data size is very large. Moreover, these algorithms are not suitable for streaming data when the full size of the data is unknown. In this work, we propose an incremental tensor subspace learning that uses only a small part of the entire data and updates the low-rank model incrementally when new data arrive. In addition, the multi-feature model allows us to build a robust low-rank background model of the scene. Experimental results shows that the proposed method achieves interesting results for background subtraction task.
منابع مشابه
Robust tensor subspace learning for anomaly detection
Background modeling plays an important role in many applications of computer vision such as anomaly detection and visual tracking. Most existing algorithms for learning appearance model are vector-based methods without maintaining the 2D spatial structure information of objects in an image. To this end, a robust tensor subspace learning algorithm is developed for background modeling which can c...
متن کاملIncremental multi-linear discriminant analysis using canonical correlations for action recognition
Canonical correlations analysis (CCA) is often used for feature extraction and dimensionality reduction. However, the image vectorization in CCA breaks the spatial structure of the original image, and the excessive dimension of vector often brings the curse of dimensionality problem. In this paper, we propose a novel feature extraction method based on CCA in multi-linear discriminant subspace b...
متن کاملReal-Time Subspace-Based Background Modeling Using Multi-channel Data
Background modeling and subtraction using subspaces is attractive in real-time computer vision applications due to its low computational cost. However, the application of this method is mostly limited to the gray-scale images since the integration of multi-channel data is not straightforward; it involves much higher dimensional space and causes additional difficulty to manage data in general. W...
متن کاملA Multi Linear Discriminant Analysis Method Using a Subtraction Criteria
Linear dimension reduction has been used in different application such as image processing and pattern recognition. All these data folds the original data to vectors and project them to an small dimensions. But in some applications such we may face with data that are not vectors such as image data. Folding the multidimensional data to vectors causes curse of dimensionality and mixed the differe...
متن کاملExploiting High-Order Information in Heterogeneous Multi-Task Feature Learning
Multi-task feature learning (MTFL) aims to improve the generalization performance of multiple related learning tasks by sharing features between them. It has been successfully applied to many pattern recognition and biometric prediction problems. Most of current MTFL methods assume that different tasks exploit the same feature representation, and thus are not applicable to the scenarios where d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014